android之LruCache(转)

android之LruCache(转)

android开发过程中经常会用到缓存,现在主流的app中图片等资源的缓存策略一般是分两级,一个是内存级别的缓存,一个是磁盘级别的缓存。

作为android系统的维护者google也开源了其缓存方案,LruCache和DiskLruCache。从android3.1开始LruCache已经作为android源码的一部分维护在android系统中,为了兼容以前的版本android的support-v4包也提供了LruCache的维护,如果App需要兼容到android3.1之前的版本就需要使用support-v4包中的LruCache,如果不需要兼容到android3.1则直接使用android源码中的LruCache即可,这里需要注意的是DiskLruCache并不是android源码的一部分。

在LruCache的源码中,关于LruCache有这样的一段介绍:

1
A cache that holds strong references to a limited number of values. Each time a value is accessed, it is moved to the head of a queue. When a value is added to a full cache, the value at the end of that queue is evicted and may become eligible for garbage collection.

cache对象通过一个强引用来访问内容。每次当一个item被访问到的时候,这个item就会被移动到一个队列的队首。当一个item被添加到已经满了的队列时,这个队列的队尾的item就会被移除。

其实这个实现的过程就是LruCache的缓存策略,即Lru–>(Least recent used)最少最近使用算法。

下面我们具体看一下LruCache的实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
public class LruCache<K, V> {
private final LinkedHashMap<K, V> map;

/** Size of this cache in units. Not necessarily the number of elements. */
private int size;
private int maxSize;

private int putCount;
private int createCount;
private int evictionCount;
private int hitCount;
private int missCount;

/**
* @param maxSize for caches that do not override {@link #sizeOf}, this is
* the maximum number of entries in the cache. For all other caches,
* this is the maximum sum of the sizes of the entries in this cache.
*/
public LruCache(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
this.maxSize = maxSize;
this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
}

/**
* Sets the size of the cache.
*
* @param maxSize The new maximum size.
*/
public void resize(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}

synchronized (this) {
this.maxSize = maxSize;
}
trimToSize(maxSize);
}

/**
* Returns the value for {@code key} if it exists in the cache or can be
* created by {@code #create}. If a value was returned, it is moved to the
* head of the queue. This returns null if a value is not cached and cannot
* be created.
*/
public final V get(K key) {
if (key == null) {
throw new NullPointerException("key == null");
}

V mapValue;
synchronized (this) {
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
}

/*
* Attempt to create a value. This may take a long time, and the map
* may be different when create() returns. If a conflicting value was
* added to the map while create() was working, we leave that value in
* the map and release the created value.
*/

V createdValue = create(key);
if (createdValue == null) {
return null;
}

synchronized (this) {
createCount++;
mapValue = map.put(key, createdValue);

if (mapValue != null) {
// There was a conflict so undo that last put
map.put(key, mapValue);
} else {
size += safeSizeOf(key, createdValue);
}
}

if (mapValue != null) {
entryRemoved(false, key, createdValue, mapValue);
return mapValue;
} else {
trimToSize(maxSize);
return createdValue;
}
}

/**
* Caches {@code value} for {@code key}. The value is moved to the head of
* the queue.
*
* @return the previous value mapped by {@code key}.
*/
public final V put(K key, V value) {
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
}

V previous;
synchronized (this) {
putCount++;
size += safeSizeOf(key, value);
previous = map.put(key, value);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}

if (previous != null) {
entryRemoved(false, key, previous, value);
}

trimToSize(maxSize);
return previous;
}

/**
* Remove the eldest entries until the total of remaining entries is at or
* below the requested size.
*
* @param maxSize the maximum size of the cache before returning. May be -1
* to evict even 0-sized elements.
*/
public void trimToSize(int maxSize) {
while (true) {
K key;
V value;
synchronized (this) {
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
}

if (size <= maxSize) {
break;
}

Map.Entry<K, V> toEvict = map.eldest();
if (toEvict == null) {
break;
}

key = toEvict.getKey();
value = toEvict.getValue();
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
}

entryRemoved(true, key, value, null);
}
}

/**
* Removes the entry for {@code key} if it exists.
*
* @return the previous value mapped by {@code key}.
*/
public final V remove(K key) {
if (key == null) {
throw new NullPointerException("key == null");
}

V previous;
synchronized (this) {
previous = map.remove(key);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}

if (previous != null) {
entryRemoved(false, key, previous, null);
}

return previous;
}

/**
* Called for entries that have been evicted or removed. This method is
* invoked when a value is evicted to make space, removed by a call to
* {@link #remove}, or replaced by a call to {@link #put}. The default
* implementation does nothing.
*
* <p>The method is called without synchronization: other threads may
* access the cache while this method is executing.
*
* @param evicted true if the entry is being removed to make space, false
* if the removal was caused by a {@link #put} or {@link #remove}.
* @param newValue the new value for {@code key}, if it exists. If non-null,
* this removal was caused by a {@link #put}. Otherwise it was caused by
* an eviction or a {@link #remove}.
*/
protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {}

/**
* Called after a cache miss to compute a value for the corresponding key.
* Returns the computed value or null if no value can be computed. The
* default implementation returns null.
*
* <p>The method is called without synchronization: other threads may
* access the cache while this method is executing.
*
* <p>If a value for {@code key} exists in the cache when this method
* returns, the created value will be released with {@link #entryRemoved}
* and discarded. This can occur when multiple threads request the same key
* at the same time (causing multiple values to be created), or when one
* thread calls {@link #put} while another is creating a value for the same
* key.
*/
protected V create(K key) {
return null;
}

private int safeSizeOf(K key, V value) {
int result = sizeOf(key, value);
if (result < 0) {
throw new IllegalStateException("Negative size: " + key + "=" + value);
}
return result;
}

/**
* Returns the size of the entry for {@code key} and {@code value} in
* user-defined units. The default implementation returns 1 so that size
* is the number of entries and max size is the maximum number of entries.
*
* <p>An entry's size must not change while it is in the cache.
*/
protected int sizeOf(K key, V value) {
return 1;
}

/**
* Clear the cache, calling {@link #entryRemoved} on each removed entry.
*/
public final void evictAll() {
trimToSize(-1); // -1 will evict 0-sized elements
}

/**
* For caches that do not override {@link #sizeOf}, this returns the number
* of entries in the cache. For all other caches, this returns the sum of
* the sizes of the entries in this cache.
*/
public synchronized final int size() {
return size;
}

/**
* For caches that do not override {@link #sizeOf}, this returns the maximum
* number of entries in the cache. For all other caches, this returns the
* maximum sum of the sizes of the entries in this cache.
*/
public synchronized final int maxSize() {
return maxSize;
}

/**
* Returns the number of times {@link #get} returned a value that was
* already present in the cache.
*/
public synchronized final int hitCount() {
return hitCount;
}

/**
* Returns the number of times {@link #get} returned null or required a new
* value to be created.
*/
public synchronized final int missCount() {
return missCount;
}

/**
* Returns the number of times {@link #create(Object)} returned a value.
*/
public synchronized final int createCount() {
return createCount;
}

/**
* Returns the number of times {@link #put} was called.
*/
public synchronized final int putCount() {
return putCount;
}

/**
* Returns the number of values that have been evicted.
*/
public synchronized final int evictionCount() {
return evictionCount;
}

/**
* Returns a copy of the current contents of the cache, ordered from least
* recently accessed to most recently accessed.
*/
public synchronized final Map<K, V> snapshot() {
return new LinkedHashMap<K, V>(map);
}

@Override public synchronized final String toString() {
int accesses = hitCount + missCount;
int hitPercent = accesses != 0 ? (100 * hitCount / accesses) : 0;
return String.format("LruCache[maxSize=%d,hits=%d,misses=%d,hitRate=%d%%]",
maxSize, hitCount, missCount, hitPercent);
}
}

可以看到LruCache初始化的时候需要使用泛型,一般的我们这样初始化LruCache对象:

1
2
3
4
5
6
7
8
9
10
// 获取应用程序最大可用内存  
int maxMemory = (int) Runtime.getRuntime().maxMemory();
int cacheSize = maxMemory / 8;
// 设置图片缓存大小为程序最大可用内存的1/8
mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {
@Override
protected int sizeOf(String key, Bitmap bitmap) {
return bitmap.getByteCount();
}
};

这里我们假设通过String作为key保存bitmap对象,同时需要传递一个int型的maxSize数值,主要用于设置LruCache链表的最大值。

查看其构造方法:

1
2
3
4
5
6
7
8
9
10
// 获取应用程序最大可用内存  
int maxMemory = (int) Runtime.getRuntime().maxMemory();
int cacheSize = maxMemory / 8;
// 设置图片缓存大小为程序最大可用内存的1/8
mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {
@Override
protected int sizeOf(String key, Bitmap bitmap) {
return bitmap.getByteCount();
}
};

可以看到其主要的是初始化了maxSize和map链表对象。

然后查看put方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public final V put(K key, V value) {
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
}

V previous;
synchronized (this) {
putCount++;
size += safeSizeOf(key, value);
previous = map.put(key, value);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}

if (previous != null) {
entryRemoved(false, key, previous, value);
}

trimToSize(maxSize);
return previous;
}

需要传递两个参数:K和V,首先做了一下参数的判断,然后定义一个保存前一个Value值得临时变量,让putCount(put执行的次数)自增,让map的size大小自增。
需要注意的是这里的

1
previous = map.put(key, value);

我们看一下这里的map.put()的具体实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
@Override public V put(K key, V value) {
if (key == null) {
return putValueForNullKey(value);
}

int hash = Collections.secondaryHash(key);
HashMapEntry<K, V>[] tab = table;
int index = hash & (tab.length - 1);
for (HashMapEntry<K, V> e = tab[index]; e != null; e = e.next) {
if (e.hash == hash && key.equals(e.key)) {
preModify(e);
V oldValue = e.value;
e.value = value;
return oldValue;
}
}

// No entry for (non-null) key is present; create one
modCount++;
if (size++ > threshold) {
tab = doubleCapacity();
index = hash & (tab.length - 1);
}
addNewEntry(key, value, hash, index);
return null;
}

将Key与Value的值压入Map中,这里判断了一下如果map中已经存在该key,value键值对,则不再压入map,并将Value值返回,否则将该键值对压入Map中,并返回null;

返回继续put方法:

1
2
3
4
previous = map.put(key, value);
if (previous != null) {
size -= safeSizeOf(key, previous);
}

可以看到这里我们判断map.put方法的返回值是否为空,如果不为空的话,则说明我们刚刚并没有将我么你的键值对压入Map中,所以这里的size需要自减;

然后下面:

1
2
3
if (previous != null) {
entryRemoved(false, key, previous, value);
}

这里判断previous是否为空,如果不为空的话,调用了一个空的实现方法entryRemoved(),也就是说我们可以实现自己的LruCache并在添加缓存的时候若存在该缓存可以重写这个方法;

下面调用了trimToSize(maxSize)方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public void trimToSize(int maxSize) {
while (true) {
K key;
V value;
synchronized (this) {
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
}

if (size <= maxSize) {
break;
}

Map.Entry<K, V> toEvict = map.eldest();
if (toEvict == null) {
break;
}

key = toEvict.getKey();
value = toEvict.getValue();
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
}

entryRemoved(true, key, value, null);
}
}

该方法主要是判断该Map的大小是否已经达到阙值,若达到,则将Map队尾的元素(最不常使用的元素)remove掉。

总结:
LruCache put方法,将键值对压入Map数据结构中,若这是Map的大小已经大于LruCache中定义的最大值,则将Map中最早压入的元素remove掉;

查看get方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
public final V get(K key) {
if (key == null) {
throw new NullPointerException("key == null");
}

V mapValue;
synchronized (this) {
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
}

/*
* Attempt to create a value. This may take a long time, and the map
* may be different when create() returns. If a conflicting value was
* added to the map while create() was working, we leave that value in
* the map and release the created value.
*/

V createdValue = create(key);
if (createdValue == null) {
return null;
}

synchronized (this) {
createCount++;
mapValue = map.put(key, createdValue);

if (mapValue != null) {
// There was a conflict so undo that last put
map.put(key, mapValue);
} else {
size += safeSizeOf(key, createdValue);
}
}

if (mapValue != null) {
entryRemoved(false, key, createdValue, mapValue);
return mapValue;
} else {
trimToSize(maxSize);
return createdValue;
}
}

可以看到参数值为Key,简单的理解就是通过key值从map中取出Value值。
具体来说,判断map中是否含有key值value值,若存在,则hitCount(击中元素数量)自增,并返回Value值,若没有击中,则执行create(key)方法,这里看到create方法是一个空的实现方法,返回值为null,所以我们可以重写该方法,在调用get(key)的时候若没有找到value值,则自动创建一个value值并压入map中。

总结:

  • LruCache,内部使用Map保存内存级别的缓存

  • LruCache使用泛型可以设配各种类型

  • LruCache使用了Lru算法保存数据(最短最少使用least recent use)

  • LruCache只用使用put和get方法压入数据和取出数据

另外对android源码解析方法感兴趣的可参考我的:

android源码解析之(一)–>android项目构建过程

android源码解析之(二)–>异步消息机制

android源码解析之(三)–>异步任务AsyncTask

android源码解析之(四)–>HandlerThread

android源码解析之(五)–>IntentService

android源码解析之(六)–>Log

发布于

2022-08-06

更新于

2022-08-06

许可协议

评论

:D 一言句子获取中...

加载中,最新评论有1分钟缓存...